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Analysis of Curved and Angled Surfaces
on a Cartesian Mesh Using a Novel

Finite-Difference Time-Domain Algorithm
Ian J. Craddock and Chris J. Railton

Absfract— The widely accepted finite-difference time-domain
algorithm, based on a Cartesian mesh, is unable to rigorously
model the curved surfaces which arise in many engineering ap-
plications, while more rigorous solution algorithms are inevitably
considerably more computationally intensive. A nonintensive, but
still rigorous, alternative to this approach has been to incorporate
a priori knowledge of the behavior of the fields (their asymptotic
static field solutions) into the FDTD algorithm. Unfortunately,
until now, thk method has often resulted in instability. In this
contribution an algorithm (denoted ‘SFDTD’ for second-order
finite difference time domain) is presented which uses the static
field solution technique to accurately characterize curved and an-
gled metallic boundaries. A hitherto unpublished stability theory
for this algorithm, relying on principles of energy conservation, is
described and it is found that for the first time a priori knowledge
of the field distribution can be incorporated into the algorithm
with no possibility of instability. The accuracy of the SFDTD
algorithm is compared to that of the standard FDTD method
by means of two test structures for which analytic results are
available.

I. INTRODUCTION

THE finite-difference time-domain (FDTD) technique is
widely accepted as an efficient, reliable, and flexible

method for the electromagnetic analysis of a wide variety of
structures. Perhaps the most fundamental limitation of FDTD
is that in its usual form, first suggested by Yee in 1966 [1],

the method represents the modeled object as a Cartesian-based
mesh of field components. This spatial discretization prevents
the standard FDTD method from accurately characterizing
the curved structures which arise frequently in engineering
applications.

In [2], the authors first presented a finite-difference time-
domain algorithm (second-order finite difference time domain
or ‘SFDTD’ ) which facilitated the treatment of curved metallic
structures. The algorithm utilized the static field solution
technique, originally described in [3], to rigorously model

the curved surfaces. Employing static field solutions when

attempting to analyze curved bodies with the well-known

Yee algorhhm (FDTD) often resulted in instability; SFDTD,

however, appeared not to suffer from this problem.
For clarity, we initially review some of the background

pertaining to the modeling of curved structures and then de-
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scribe a modification of the SFDTD correction factor scheme
given in [2]. This modification results in it being possible to
show, by means of a previously unpublished stability theory,
that the stability of the corrected algorithm is assured. Further
validation of the SFDTD algorithm is then given for the case
of angled and curved metal structures.

II. MODELING CURVED STRUCTURES WITH FINITE-METHODS

The conventional approach to modeling curved surfaces

with FDTD is to employ a finely staircase mesh [4], this

approach is unattractive as it requires a large number of FDTD

unit cells and a correspondingly small time-step. An alternative

approach is to locally deform the integration contours of the

FDTD algorithm [5] in the vicinity of tie curved surface: this

method yields improved accuracy but may require nonphysical

nearest neighbor “borrowing” of field components. For planar

circuits, the locally conforming method of Gwarek [6] may

be employed.

There are rigorous approaches to the time-domain charac-

terization of curved bodies, those recently proposed include

finite-volume [7], hybrid finite-volume/finite-difference [8]

and vector finite element methods [9], These techniques yield

much improved accuracy at the expense of increased numbers

of operations at each time-step and extra memory require-

ments.

A different approach has been followed at the Centre for

Communications Research, University of Bristol, whereby the

normal FDTD method is utilized with correction factors, based

on the static field solutions, introduced into the standard

difference equations in the vicinity of the curved surface.
These factors are calculated by assuming the variation of the
field close to a metal object to be dominated by its asymptotic

static behavior [10],
This approach can be briefly summarized as follows: A

section of the standard Yee mesh, describing the spatial
discretization of the electric and magnetic fieIds, is shown in
Fig. 1.

If a metallic boundary intersects the surface of integration of
a field component as shown, the standard difference equations
for the affected component are modified by the inclusion
of altered coefficients (or “correction factors”) which are
calculated from the field’s static behavior.

If the standard FDTD method is viewed as a moment
method with delta test functions and piecewise linear basis
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Fig. 1. FDTD correction scheme.

functions, the static field solution theory can be interpreted as

the local modification of the linear basis functions to a form

which more closely resembles the expected spatial behavior of
the fields [10]. This is a standard technique in finite-element
analysis where higher accuracy and reduced numbers of basis
functions can be achieved in this manner.

Static field solutions have been very successful in permitting
the accurate analysis of a number of curved [10] and small-
scale features [11]. In addition to its accuracy, the technique
requires no increase in computational effort over the standard
model, apart from a short initialization procedure within which
the correction factors are calculated.

The drawback to this potentially invaluable technique is that
instability may result from the introduction of the correction
factors into the FDTD algorithm. The problem of whether

or not an arbitrary set of correction factors will result in
instability does not appear to be amenable to either an analytic
or a practical numerical solution and the problem of how that
set should be modified to avoid the instability is even more
intractable.

III. A NEW FINI~-DIFFERENCE ALGORITHM

In an attempt to solve the instability problem, a model based
on the electric field vector wave equation was employed, as
first described in [2]; in this algorithm the magnetic fields
are eliminated. In addition, it becomes possible to employ
a colocated field discretization (i.e., one where all the field
components in a given unit cell are placed at the cell’s
vertices) which leads to a much more elegant correction factor
formulation.

Eliminating the magnetic field H from Maxwell’s curl

equations in a lossless medium gives

V x (V x E) = –c-2&E V2E– V(VE) = c-2&E (1)

where E is the electric field, c is the velocity of propagation
and t is time. In unz~orm media (V . E = O) this simplifies to

V2E = c-2(3ttE. (2)

(In the case of metallic boundaries the field divergence is
nonzero but, in effect, the correction factor scheme described
in the next section re-introduces the electric field divergence
term).

Using an electric field discretization scheme where all field
components are colocated and assuming a regular spatial
mesh, the second-order partial derivatives may be replaced by

Fig. 2. SFDTD correction scheme.

centered difference approximations. For example, the update

equation for a field component 13v may be written

E;+l(i, j, k) = –.EY‘-’(i,j, k) + (2 - *) E;(i,j, k)

+ [E;(i+ I,j, k) +E;(2 – l,.j, k)

+E;(i, j,k+ 1) +E;(i, j,k – 1)

+ E;(z, j+ l,k) +E;(2, j– l,k)]~ (3)

where A is the space-step, At is the time-step, and n (i, j, k)
represents a point in space (iA, jA, kA) at time t = nAt.

Update equations for the other electric field components

may be derived similarly, yielding a second-order finite dif-
ference time’ domain algorithm (or ‘SFDTD’ for convenience)

as opposed to the standard FDTD algorithm which involves
only first-order derivatives. This discretization of the wave
equation is well known, being nothing more than, for example,
the extension to three dimensions of the one-dimensional
algorithm of [12]. Other, similar, algorithms are those of
[13] and [14]. The new aspects of this contribution are the
modifications, described in Section IV, which enable the
rigorous treatment of curved surfaces and the stability theory

developed in Section V.
It can be shown that the Courant stability criterion (which

relates the maximum time step At to the minimum space step
A) is identical to that required for FDTD. The extra amount
of memory required by SFDTD to store the past value of each
electric field component (13J-1 in (3)) is balanced by that
needed for the storage of the magnetic fields in FDTD. The
computational effort associated with SFDTD in terms of the
number of numerical operations is slightly lower than that of
FDTD.

IV. SFDTD CORRECTION FACTOR TECHNIQUE

A curved metal surface may be accurately approximated on

a small scale by an angled planar surface as shown in Fig. 2.

The behavior of the electric field close to a metal boundary is

well known to converge to the static solution [15] and hence,

in this case, may be described by two functions

E. = kl Et = k2n (4)

where n and t are coordinates normal and tangential, respec-
tively, to the surface.
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Taking as anexample the first-order spatial derivative

(5)

since

n=xsin O–ycos6’

t=–xcos9–ysin O (6)

and

Ev = –E. cos8 – Etsin Q (7)

we produce an expression within which (4) maybe substituted,
yielding the following improved expression for the derivative
at the metal boundary

~zEv limP,Ov,d= –(sin219)k2. (8)

However

Et = –EY2 sin~ – Ez COSO= kzno (9)

where no is the normal distance from the position of EUZ and
E. to the metal boundary (see Fig. 2). Thus

8~EV Iimproved =

(sin’ 6’)(EY2 sin d + E. COSO)
(lo)

no

the approximation used to the second-order derivative is

t&Ev(i, j, k) =
t3zEY(z + l/2, j, k) – tWY(Z – l/2, j, k)

A
(11)

(11) represents a modification of the expression (9) in [2],

where the denominator used was ~ (A + a) in an attempt
to centre the derivatives at the point (i, j, k). In fact, doing
this makes little difference to the accuracy of the results and
prevents the use of the stability theory given in the following
section.

Replacing 6’zEv(i + 1/2, j, k) with (10), and &EY(i –
1/2, j, k) with the usual centered difference approximation,
the required expression for the second-order derivative is

t3z.zEu(z, j, k) =

(- “c:$ino)-w+Y)Evl
~2 –

(12)

where /? is defined as a/A and EY1, EY2 and E. are field
components neighboring the boundary (see Fig. 2).

Again, (12) differs slightly from that given in [2] for the
reasons described above.

This corrected discrete approximation may be utilized in-
stead of the standard difference form in the SFDTD algorithm.
If ~ is unity and 6’= 270° then the original difference form is
returned and, unless sin 6’is O or 1, energy will couple between
orthogonal field components (as expected).

The approximations which have been made are that the
boundary may be approximated over the unit cell by a planar
surface (a considerable improvement over its approximation by
a staircase) and that the fields will assume their static forms
over a distance < A from the boundary (which is reasonable
if A is a small fraction of a wavelength).

V. STABILITY THEORYFORTHENEWALGORITHM

In [2] it was stated that the SFDTD algorithm with its
curved surface correction factors was an inherently more stable
algorithm than the corrected FDTD algorithm. At the time
of publication, however, the reasons for this were not well
understood.

A necessary criterion for the stability of a numerical model

is that it is a model of a stable physical process, this is
intuitively clear and need not be discussed further except to
say that this criterion is not by itself sufficient, as shown by

the well-known limit on the FDTD time-step At [16] which,
when violated, results in algorithmic instability despite the
energy conservation implicit in Maxwell’s equations. We now
show that the aforementioned criterion is met by the corrected
SFDTD algorithm in two spatial dimensions. the extension to
three dimensions being trivial.

In finite-difference form, the uncorrected 2-D SFDTD algo-
rithm for any given field component can be written

En+l(i, k) = –Em-l(i, k)

+ (2 – k(l + 1+ 1 + l)) En(i, k) +LEn(i– l,k)

+kEn(i+ l,k)+kEn(i, k – 1) + kEn(i, k+ 1) (13)

with the stability factor k = (~) 2 (< O.5 for stability).
In (13), as elsewhere in this section, some terms have not
been collected together in order to help make clear the
correspondences between terms in the update equations and
features of the physical problem.

In general, two curved surface corrections may be required

as shown, for example, at node (0,0) in Fig. 3, with the angles
of the two tangents to the curved boundary being 191and 02 and
the distances from node (0,0) to the boundary being al = ~1 A
and a2 = ~z A in the x and z directions, respectively. The
update equations for E. and Ez at the point (O, O) then become

E:+l(O, O) = –ES-l(O, O)

(( sinz02+ 2_k ‘inzol ;
))B1 02 +1+1 ‘;(O’O)

–k
sin(3zcos 6’2

132
E:(O, O)) (14)

and

E;+l(o, O) = –E:-l(O, O)

+ kE:(l, O) + kE;(O, 1)

–k
sin61cos 01

@l
E:(O, O) – k ‘in ‘~:s ‘2 %(07 0))

(15)

Now consider the passive network shown by Fig. 4; this
circuit consists of two separate 2-D networks, one with nodal
voltages represented by V. (t, k) and the other, V. (i, k), where
the coordinates (i, k) specify the voltage at the ith node in the
direction x in the network, and the kth node in direction z.
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Fig. 4. 2-D electricalnetwork

The only connections coupling the two networks are the ideal

transformers 2’1 and T2 at the node (O, O). All capacitors are
assumed to be identical, with value G, as are all the inductors,
L, with the exception of the components L1 and L2.

At, for example, the node (1, 1) (not connected to the
transformer) simple analysis shows that

a,,v(l, 1)

(

_ V(2,1) – V(l,l) + V(1,2) – V(l,l)
—

CL CL

+V(o,1) – V(1> 1) + V(l, o) – V(l,l)

CL )CL “
(16)

Replacing the temporal derivative of V with the appropriate
centered difference expression yields

v~+l(l,1)

((__/m-l+ ~_q
c ;+++;++ ))Vn(l, 1)

+ $@2,1) +vn(l,2) +Vn(o,l) +Vn(l, o)).

(17)

Thus, the nodal equations in the region not connected to the
transformer are identical in form to the SFDTD update (13) in
free space with the following substitutions

c = EA2 (18)

L=p<

It should be noted that the components in the network are
analogs of the assumed spatial dependence of the fields in the
SFDTD algorithm (i.e., piecewise linear) and that, in the region
not connected to the transformer, this two dimensional lumped

equivalent circuit is the same as the planar 13DTD equivalent
circuit presented in [6].

The analysis of the nodal voltages at the node (O, O), where

two of the branch connections are to transformers rather

than adjacent nodes, is more involved. Firstly we assume the

transformers are ideal and have winding ratios 1 : N1 and

1 : N2, respectively. Thus for T1

(19)

Izl ==NII.1

since the transformer is ideal. Summing voltages around the
loops containing the windings gives

V.(O, O) – V.1 = L18J.1 (20)

V.(O, O) – V.1 = Lltllzl

solving for the nodal voltages and current l.l yields

~tlzl= V.(o,o)+ Ivlvz(o,o)
(21)

Ll(l + N?)

thus

8tIz1 = N1
V.(o, o) + Nlvz(o, o)

Ll(l + N;) “
(22)

If we now let N1 = cot 191

(ZitIzl =
sin2 OIVZ(O, O) – sin 01 cos OIVZ(O,0)

L1

&Izl =
– COS2OIVZ(O, O) + sin 191cos OIVZ(O, O)

L1
(23)

Identical expressions (but with 6’2 and L2) can be produced

for the other transformer. These currents can be used to derive

A~ sin& cos 91
gv. (l, o) + +Vz(o,l) –

CL1
V;(o,o)

A? sin OZcos 92—
CL2

Vy(o, 0) (24)

and it is now clear that substitution of

L1 = @

L2 = p/32 (25)

yields the SFDTD update-equation (14) with the curved sur-
face corrections.

It has now been shown that the SFDTD model both with
and without the curved surface correction factors is exactly
equivalent to a representation of a passive network. Energy
conservation is guaranteed in such a network, and so therefore
is stability. It is if course possible to have a stable active

network but in such a case stability can only be assured by
examination of all possible feedback paths within the network,
this corresponds to the impractical task of evaluating all the
eigenvalues of the difference algorithm.
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Fig. 5. Cylinder resonant frequencies.
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Fig. 6. Segment of rotated rectangular box cross-section for @ = 14°.

Here it should be noted that if the denominatorof(11) is that
given by (9) in [2] it is not possible to produce a passive circuit
equivalent to the corrected algorithm. This implies that the
slightly different algorithm given in [2] may exhibit instability,
and for a few structures this has proved to be the case,

VI. VALIDATIONOF THE NEW ALGORITHM

A. Test Case I—Cylindrical Resonator

A metal-walled closed cylindrical resonator identical to that
described in [10], was modeled using the combination of
SFDTD and the correction method described above and a
@ted uniform mesh size of 5cm. The simple geometry allows
analytic cavity resonance techniques to predict the resonant
frequencies with high accuracy for comparison.

Fig. 5 shows the variation in the cylinder’s resonant fre-
quencies as a function of radius. The solid line represents
the (perfect) analytic solution and the dashed line the results
produced by the new algorithm, SFDTD. The marker points
indicate the predictions of the standard, staircase, FDTD
method (employing the same mesh size). Comparison of these
results with those given in [2] using the slightly different, and
potentially unstable, scheme shows that the modification to the
correction factors introduced in Section IV of this contribution
has had little effect on the results. Indeed, particularly for the
model with radius 16 cm, some improvement in accuracy can
be noted.

Overall, given the coarseness of the mesh with respect
to both frequency and surface curvature, the SFDTD results
adhere well to the theoretical curves and are, as expected, con-
siderably more accurate than the staircase FDTD technique.
The TMOIO mode in particular is excellently characterized,
virtually independent of cylinder radius. The results for the
TM110 mode are good for radii of >18 cm but become less
accurate as the radius decreases (this is probably due to both

TABLEI
RESONANTFREQUENCIESFOR ROTATEDRECTANGULARBox

Mode Theory FDTD SFDTD FDTD Error SFDTD Error
101 633 MHz 620 MHz 622 MHz 2.1% 1.7%
012 869 MHz 648 MHz 870 MHz 2.4% 0.1%
011 549 MHz 575 MHz 545 MHz 4.7% 0.7% )

TABLE II
REsONANTFREQUENCIESFORA NUMBEROF ROTATEDI&cr,4iwwbmBOXES

v 101
012

&

-t

012
011

18.4° 101
012

*

011
26.6° 101

012
011

FDTD Error
1.6%
0.1%
6.3%
2.1%
2.4%
4.7%
0.3%
0.6%
11.3%
3.7%
4.2%
8.2%

-

SFDTD Error
0.6%
0.6%a0.9%
1.7%
0.1%
0.7%
1.8%

d
0.8%
0.5’%
2.1%
1.1%
1.0%

a decrease in the number of field components available to
describe the cylinder and to the increase in frequency of the
mode). The most difficult mode to model is clearly the TE1l 1
mode, the FDTD results for this are notably poor and while
the SFDTD algorithm performs more consistently, the results
may indicate potential for improvement in the technique.

B. Test Case 2—Rotated Rectangular Box

A metal walled rectangular box with square cross section

was analyzed, again with a fixed mesh size of 5 cm and
a height of 15 cm, however, the box was rotated through
an angle # with respect to the mesh. This resulted in the
sides of the box not being aligned with the nodal-planes
of the difference algorithm. For convenience, values of ~
producing integer gradients were chosen and the box side
lengths were selected for each # such that the surfaces of the

box passed through the corners of the unit cells - as illustrated
for ~ = arctan ~ = 14.0° by Fig. 6.

The FDTD algorithm approximates the angled surfaces with
a staircase and the SFDTD algorithm with the correction
factors described above.

Table I shows the resonant frequencies for the box with
angle # = 14.0° (it should be noted that due to the square
cross-section of the structure each resonance may represent
more than one mode).

A summary of the results for four angles (arctan ~,

arct an ~, arct an ~ and arct an ~) is given by Table II.
Once again the SFDTD results (with curved surface cor-

rections) agree well with the analytic results, in the majority
of cases the resonant frequencies are correct to within one
percent. The FDTD algorithm, as might be expected, fares
less well, although some modes are well characterized, most
exhibit significant error.

The mean error across all modes and all 4 for FDTD was
3.8% and 1.O?ZOfor SFDTD, thus SFDTD’s curved surface
corrections reduce the modeling error in this case by around
a factor of 4; this being a similar figure to that achieved
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when modeling the cylindrical cavity described in the pt-evious

section.

As expected, neither the cylindrical nor the rotated-box

geometries exhibited any form of numerical instability.

VII. SUMMARYAND CONCLUSION

This contribution has shown how an alternative finite-
difference time-domain algorithm can be derived. This algo-
rithm, SFDTD, can be simply modified to rigorously model
both curved and angled metal surfaces. The algorithm’s sta-
bility is assured as the behavior of the field components in
the algorithm is an exact analog of the voltages in a passive
electrical network.

The SFDTD algorithm is, in the authors’ opinions, far better

suited to the analysis of curved and angled boundaries than the
FDTD method. This fact arises because the collocation of the
field components enables a simple resolution into the normal
and tangential components in terms of which the boundary
conditions are specified.

Future development of this algorithm is expected to include
its application to problems containing dielectric interfaces and
sharp metallic boundaries (for example microstrip). For each

of these cases a specific correction must be introduced into the
algorithm by means of the appropriate static field solution, in
order to compensate for the loss of the field divergence term,

just as has been done here for smooth conducting boundaries.
If this can be achieved SFDTD may prove in the future a
superior alternative to the established FDTD algorithm.
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